
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1988
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Design and Implementation of Advanced
Encryption Standard Security Algorithm using

FPGA
Adnan Mohsin Abdulazeez,

Duhok Polytechnic University
And

Ari Shawkat Tahir
University of Zakho

Abstract- In this paper, two architectures have been proposed, one for AES Encryption 128-bit process, and the other for AES Decryption 128-bit pro-
cess. Both architectures are based on an iterative structure and modifications such as merging transformation (SubByte and ShiftRow in Encryption
process, and Inverse SubByte and Inverse ShiftRow in Decryption process), Look Up tables for decryption, generating keys, and optimization of each
clock cycle to incorporate maximum number of operations to improve the throughput and reducing hardware resources. The design has been described
by VHDL and simulated by using Xilinx ISE 9.2i.The architectures have been implemented on reconfigurable platforms FPGAs. Accomplishment when
implemented on Xilinx_Virtex4 (device xc4vlx80, package 12ff1148) which confirms that the proposed architectures have minimum hardware resource,
where only 9% of the chip resources are used for AES Encryption design with realizable operating clock frequency of 382.988MHz, and only 9% of the
chip resources are used for AES Decryption design with realizable operating clock frequency of 382.988MHz.

Index Terms— — Cryptography, Advanced Encryption Standard (AES).

1 INTRODUCTION
he importance of cryptography applied to security in elec-
tronic data transactions has required an essential rele-
vance during the last few years. Cryptography is the art

and science of protecting information from undesirable indi-
viduals by converting it into a non-recognizable form by its
attackers while stored and transmitted. Data cryptography
mainly is the scrambling of the content of data, such as text,
image, audio, video and so forth to make the data unreadable,
invisible or unintelligible during transmission or storage. This
is called encryption [1]

2 ALGORITHM DESCRIPTIONS

The Advanced Encryption Standard (AES) was announced
by the National Institute of Standards and Technology (NIST)
in November 2001. It is the successor of Data Encryption
Standard (DES), which cannot be considered as safe any long-
er, because of its short key with a length of only 56 bits [2].

AES is a block cipher with a block length of 128 bits. The in-
itial input to the algorithm is stored in a 4X4 byte matrix called
State and operations are performed on this matrix. Three dif-
ferent key lengths of 128 bits, 192 bits and 256 bits are sup-
ported. The numbers of rounds are 10, 12 and 14 for key
lengths 128, 192 and 256 bits, respectively. Each round consists
of the following operations, namely, Substitute Bytes,
ShiftRows, MixColumns and AddRoundKey[3]. As shown in
Fig (1.a)

The first step in AES algorithm is “Add round key”. It is
followed by n-1 rounds (n depends on the key length as men-
tioned before) each comprising Substitute bytes, Shift rows,
Mix columns and Add round key operations. The last round

contains Substitute bytes, Shift rows and Add round key oper-
ations. The algorithm starts and ends with Add round opera-
tion [3].

The SubBytes transformation is a non-linear byte substitu-
tion that operates independently on each byte of the State us-
ing a substitution table (Sbox). This Sbox, which is invertible,
is constructed by composing two transformations [4]:

Take the multiplicative inverse in the finite field GF (28),
the element {00} is mapped to itself.

Apply the following affine transformation (over GF(2)):

1. Take the multiplicative inverse in the finite field
GF(28), the element {00} is mapped to itself.

2. Apply the following affine transformation (over
GF(28)):

 = bi ⊕ b(i+4) mod 8 ⊕ b(i+5)mod 8⊕ b(i+6)mod 8⊕
b(i+7)mod 8⊕ci
(2.1)

The ShiftRow operation changes the byte position in the
State matrix. Each row of the matrix is rotated with different
offsets to obtain a new State matrix; the first row is un-
changed; where the second, the third and the fourth ones are
respectively rotated one byte, two bytes, and three bytes to the
left

The MixColumns transformation operates on the State col-
umn-by-column, treating each column as a four-term polyno-
mial. The columns are considered as polynomials over GF(28)
and multiplied modulo x4 + 1 with a fixed polynomial a(x),

T IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1989
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

given by

a(x) = {03}x3 + {01}x2 + {01}x + {02} . (2.2)

This can be written as a matrix multiplication. Let
S′(x) = a(x) ⊗S(x):

In the AddRoundKey transformation, the state is modified

by combining it with a round key with the bitwise XOR opera-
tion. A round key is denoted by Expanded Key[i], 0 ≤ i ≤ Nr.
The array of round keys ExpandedKey is derived from the
cipher key by means of the key schedule (see Sect. 2.7.3). The
round key length is equal to the block length [5].

AES algorithm decryption process is shown in Fig.1.b. In-
versed its encryption process will be able to decrypt the cipher
text.

3 THE RELATED WORKS

 In 2009, Ghaznavi, et. al., [6] introduced a technique for the

FPGA implementation of the MixColumns transformation, an
important part of AES. The proposed design provides the
smallest hardware usage on an FPGA. Overall, the AES en-
cryption implementation with the proposed MixColumns ar-
chitecture reduces usage of hardware resources. The im-
provement is obtained by more efficient resource sharing
through expansion and rearrangement of the MixColumns
equation with respect to the structure of FPGAs contains 4-
input LUTs. The present study can be highly useful for effi-
cient utilization of hardware resources on FPGAs in modes
using encryption of AES. The proposed design can be used to
provide security services such as confidentiality or authentica-

tion by these modes.

In 2009, Banraplang, et. al., [7] presented the hardware im-

plementation of Advanced Encryption Standard (AES) algo-
rithm. In this paper, it worked with an iterative structure and
Look Up tables for decryption, and optimization of each clock
cycle to incorporate maximum number of operations. The en-
cryption and decryption process of AES algorithm was cap-
tured in VHDL language and corresponding FPGA implemen-
tation resulted in reduced number of slices and achieved a
data throughput of 1.4 Gbit/sec.

In 2010, Zhang, et. al., [8] proposed an implementation of
the AES-128 cryptographic algorithm using outer-round only
pipelined architecture. The proposed design uses the Block
RAM storing the S-box values and exploits two kinds of Block
RAM. By combining the operations in a single round, the pre-
sented design can reduce the critical delay. Therefore, the pre-
sented design can achieve a throughput of 34.7 Gbps at 271.15
MHz and 2389 CLB Slices with 200 BRAM. The AES-128 archi-
tecture presented has been implemented using Veilog HDL.

In 2010, Wang, et. al., [4] proposed an architecture design
for compact hardware implementation of an AES encryption
core. In that research, the area and speed performance of ap-
plying a pipelined S-box to compact AES hardware implemen-
tations was examined. The proposed design employs a single
4-stage pipelined S-box that is shared by the data path opera-
tion and the key expansion operation. It can achieve an in-
crease in throughput of 2.1 times while maintaining a similar
gate count, indicating that pipelined S-boxes are applicable to
compact implementations of AES for the purpose of speed
improvement.

In 2010, Ahmed, [9] presented a modified Rijndael algo-
rithm capable of encrypting a 128 bit input/output/key. The
presented algorithm depends on substitution and permutation
network (SPNetwork) rather than feistel network. A new mir-
ror stage has been added to increase the complexity of algo-
rithm. The modified algorithm has been realized and simulat-
ed using VHDL. The introduced architecture was implement-
ed by VHDL, schematic and core generator – Based Design
which are synthesized, placed and routed in Virtex XCV800-
6bg432 which resulted in an optimized area (7148) slices and
(44) MHz clock speed.

4 THE PROPOSED ALGORITHM

In addition to the software implementation for the AES al-
gorithm (using C++ for software implementation), the AES
architecture has been described by VHDL (Very high speed
integrated circuit Hardware Descriptive Language) and simu-
lated by using Xilinx ISE 9.2i.

In this thesis, there are two architectures designed separate-
ly.

1. The first architecture is designed for AES Encryp-
tion Algorithm.

2. The second architecture is designed for AES De-
cryption Algorithm.

4.1 Design of the AES Encryption Algorithm
This design used is to generate the encrypted data (cipher-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1990
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

text) from the original data (plaintext). The proposed design of
the AES Encryption Algorithm using one 255-bit Roms named
Sbox, which is used by KeyExpanisin component to generate a
new key, and also used by SubShiftbyte component. This Rom
is storing a fixed values, this value can't be changed. Figure
(4.1) shows the block diagram of AES Encryption:

Figure (4.1): the Block Diagram of AES Encryption

 The first Stage of AES Encryption Diagram
In this stage, reading 128-bit Data and entered to an array

called state array and also reading 128-bit Key and it's entered
to an array called key array. This array contains 128 rows, each
row contains 1-bit. The state array represents the plaintext
which is processed to get the ciphertext.

 The Second Stage of AES Encryption Diagram

In this stage, it receives 128-bit key array from the previous
stage then it is manipulated to produce new keys to be used in
the AES Encryption rounds. it performs three operations on
the key array to produce a new key. Some of specified entries
of the key array are replaced by another entries located in the
ROM memory named Sbox and there is a new variable named
Constant Round added to the key during generating new key.
The value of the Constant Round is changed from one round
to another. Then some entries of the key are Xored with the
new entries and Constant Round are producing new key for
specified AES encryption round.

 The Third Stage of AES Encryption Diagram

The third stage receives the state array from the first stage
and the key array. In this stage, the state array contains chang-
es when going through several components. At the end, the
processed state array either from Encryption component is
sent to the next stage.

In this stage, there are four components as shown below,
these four components iterated in 10 rounds except round 10
where the MixColumn is not activated.

1. Reg_128 Component
2. SubShiftByte Component.
3. MixColumn Component.
4. AddRoundKey Component.

 The Fourth Stage of AES Encryption Diagram

The fourth stage receives state array from the previous
stage and entered in the new array named output. The output
array consists of 128 rows; each row consists of 1-bit. The out-
put array represents the cipher-text. The output represents the
processed data. At the end, it gets the 128-bit ciphertext from

128-bit plaintext.
The figure (4.2) shows the AES encryption process

The figure (4.2): AES Encryption Process

4.2 Design of the AES Decryption Algorithm

This design used to generate the original data (plaintext)
from the entered data (ciphertext). The proposed design of the
AES Decryption Algorithm uses two 255-bit ROMs, the first
one is called Sbox used by KeyExpanisin component to gener-
ate a new key, and the second Rom is named InvSbox, it is
used by InvSubShiftbyte component. Both ROMs store a fixed
value, this value cannot be changed. The block diagram of
AES Decryption is shown below:

There are four stages in our architecture of the AES Decryp-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1991
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tion Algorithm as shown in Figure (4.3).

Figure (4.3): the Block Diagram of AES Decryption

 The first Stage of AES Decryption Diagram
In this stage, reading 128-bit Data and entering to an array

is called the state array and also reading 128-bit Key entering
to an array is called the key array. These arrays contain 128
rows, each row contains 1-bit. The state array represents the
ciphertext which is processing to get the original data.

 The Second Stage of AES Decryption Diagram

This stage is the same stage in AES Encryption Diagram,
so it is explained in (Sec 4.1).

 The Third Stage of AES Decryption Diagram

The third stage receives the state array form the first stage
and the key array from the second stage. In this stage, the
state' array contain changed when goes through several com-
ponents. At the end, the processed state array either from En-
cryption component is sent to the next stage.

In this stage, there are four components as shown below;
these four components iterated in 10 rounds except the round
10 where the InvMixColumn is not activated.

1. Reg Component
2. InvSubShiftByte Component.
3. InvAddRoundKey Component.
4. InvMixColumn Component.

The first component is called Register (Reg) which has an
input signal Reset for initialization of this register to the value
0x00. The second component is called InSubShiftByte. The
InvSubByte and InvShiftRow transformers are combined in a
single component named InSubShiftByte.

 This component receives state array from the first compo-
nent, then changes the state array elements by other elements
stored in a ROMs memory called InvSbox array at the same
time it changes the state array entries positions to get the cor-
rect positions. To changes the state array entire, there is a
ROM memory created and storing the InvSbox values in the
created ROM. Those values are fixed and unchangeable, so
InSubShiftByte sends the state entire which will be the index
of the Rom and the Rom returns the values from InvSbox table
depending on the index.

The third component component tried to XOR the state ar-
ray with the key array and stored the results in the state array,
the last component in the third stage is called InvMixColumn
component. It dividing the state array into four columns each
of them is multiplied with the specified row in the fixed array
to get a value comprising of mixing the four elements in the
column. The InvMixColumn is active for all rounds in Decryp-

tion process except the last one which will not be activated.
 The Fourth Stage of AES Decryption Diagram

The fourth stage receives the state array from the previous
stage and entered in the new array named output.
Figure (4.4) shows the AES Decryption Process

5 EXPERIMENTAL RESULTS:
5.1 Results of the proposed architecture of the AES En-
cryption algorithm

The AES Encryption has been described by VHDL and
simulated by using Xilinx ISE 9.2i. Table (5.1) shows the 128-
bit input plaintext, 128-bit key, number of rounds and 128-bit
ciphertext. The Simulation results for the above input 128-
plaintext is shown in Figure (5.1):

Figure (4.4): AES Decryption Process

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1992
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Table (5.1): AES Encryption Input and Output

Figure (5.1): Simulation of AES Encryption Process

Figure (5.2): Simulation of AES Decryption Process

Table (5.2): AES Decryption Input and Output

5.2AES Encryption Architecture Synthesis

The proposed architect-ture has been synthesized and im-
plemented successfully on the device family Virtex4 (device
XC4VLX80, package FF1148). The device utilization summary
is shown in Table (5.3), and the timing summary and memory
summary are shown in Table (5.4).

Table (5.3): Device Utilization Summery of AES Encryption
Design

Table (5.4): Timing and Memory Summary of AES Encryption
Design.

5.3 Results of the proposed architecture of the AES De-
cryption algorithm

The AES Decryption has been described by VHDL and
simulated by using Xilinx ISE 9.2i. , like the AES Encryption.

The proposed algorithm tries to decrypt the block of 128-bit
of plaintext using 128-bit of keys to produce the block of 128-
bit of the original data (plaintext). Simulations have been
done on the data presented in Table (5.3) choosing that input
ciphertext and key randomly. These data entered the architec-
ture then processed through 10 rounds. At the end, the archi-
tecture will produce 128-bit plaintext.

Table (5.2) shows the 128-bit input plaintext, 128-bit key,
number of rounds and 128-bit ciphertext. The Simulation re-
sults for this input 128-plaintext is shown in Figure (5.2):

5.4 AES Decryption Architecture Synthesis

The other step after simulation is the synthesis, for this we
have used FPGAs (Field Programming Gate Arrays).The archi-
tecture has been synthesized and implemented successfully on
the device family Virtex4 (device XC4VLX80, package FF1148),
the Virtex4 starter kit board shown in Figure (5.2). The device
utilization summary is shown in Table (5.6), the timing sum-
mary and memory summary are shown in Table (4.6).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1993
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Table (5.5): Device Utilization Summery of AES Decryption
Design

Table (5.6): Timing and Memory Summary of AES Decryption

Design.

5.5 Results Comparison

 The results are compared to the results produced by other
studies presented in the literature survey. So Table (5.7) shows
the results produced by this work and the results produced by
other studies presented in the literature survey.

Table (5.7): Comparative Results of FPGA-Based AES

6 Conclusions

The Keys have been generated for all rounds before the da-
ta goes through the rounds. The SubShiftByte entity merges
both the ShiftRow and Subbyte transformation and InvSub-
Shiftbyte merges both InvShift and InvSubByte entities. The
Sbox and InvSbox array's elements have been stored in the
memory in order to be ready for substitute byte. The pervious
steps applied on the AES Encryption and AES Decryption ar-
chitecture in order to improve the frequency and reducing the
hardware utilization. Using pipeline technique's to increase
the throughput.

Simulation result s show the validity of the AES encryption
design while the synthesis results show that 9% of the chip
resource are used when implementing the design on Xil-
inx_Virtex4 (device xc4vlx80, package 12ff1148). This means
minimum resources are used for the design with clock fre-
quency of 382.988MHz.

while the Simulation results for AES Decryption design
show the validity of design while the synthesis result show
that 9% of the chip resources are used when implemented on
Xilinx_Virtex4 (device xc4vlx80, package 12ff1148). This
means minimum resources are used for the design with clock
frequency of 402.909MHz.

REFERENCES
[1] M. Abomhara, Z. Omar and O. Othman, "An Overview of Video Encryption

Techniques", International Journal of Computer Theory and Engineering, Vol.
2, No. 1, pp. 103-110, 2010.

[2] Uli Kretzschmar.," AES128 – A C Implementation for Encryption
andDecryption", Texas Instruments, 2009.

[3] K. Tarun, N. Sukumar and B. Santosh, "A Single chip implementation
of AES cipher and Whirlpool hash function", Department of Computer
Science and Engineering, Indian Institute of Technology, 2009.

[4] C. Wang and H. M. Heys, "Using a Pipelined S-Box in Compact AES
Hardware Implementations", IEEE 8th International NEWCAS Confer-
ence (NEWCAS), Memorial University, pp. 101-104, 2010.

[5] J. Daernen and V. Rijrnen, "The Design of Rijndael", Springer-Verlag
Berlin Heidelberg, 2002.

[6] S. Ghaznavi, C. Gebotys, and R. Elbaz, "Efficient Technique for the
FPGA Implementation of the AES MixColumns Transformation",
IEEE International Conference on Reconfigurable Computing and FPGAs,
pp. 219-224, 2009.

[7] B. Jyrwa and R. Paily, "An Area-Throughput Efficient FPGA imple-
mentation of Block Cipher AES algorithm", IEEE International Confer-
ence on Advances in Computing, Control, and Telecommunication Tech-
nologies, pp. 328-332, 2009.

[8] Y. Zhang and X. Wang, "Pipelined Implementation of AES Encryp-
tion Based on FPGA", IEEE International Conference on Information
Theory and Information Security, University of Jinan, pp. 170-173, 2010.

[9] A. A. Mohamed, and A. H. Madian, "A Modified Rijndael Algorithm
and its Implementation using FPGA", IEEE International Conference on
Electronics, Circuits, and Systems, pp. 335-338, 2010.

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5586927
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5586927
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5680738
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5680738

	1 Introduction
	References

